Differential

Displacement Vectors

The derivative of a position vector \bar{r}, with respect to coordinate value ℓ (where $\ell \in\{x, y, z, \rho, \phi, r, \theta\}$) is expressed as:

$$
\begin{aligned}
\frac{d \bar{r}}{d \ell} & =\frac{d}{d \ell}\left(x \hat{a}_{x}+y \hat{a}_{y}+z \hat{a}_{z}\right) \\
& =\frac{d\left(x \hat{a}_{x}\right)}{d \ell}+\frac{d\left(y \hat{a}_{y}\right)}{d \ell}+\frac{d\left(z \hat{a}_{z}\right)}{d \ell} \\
& =\left(\frac{d x}{d \ell}\right) \hat{a}_{x}+\left(\frac{d y}{d \ell}\right) \hat{a}_{y}+\left(\frac{d z}{d \ell}\right) \hat{a}_{z}
\end{aligned}
$$

A: The vector above describes the change in position vector \bar{r} due to a change in coordinate variable ℓ. This change in position vector is itself a vector, with both a magnitude and direction.

For example, if a point moves such that its coordinate ℓ changes from ℓ to $\ell+\Delta \ell$, then the position vector that describes that point changes from \bar{r} to $\bar{r}+\overline{\Delta \ell}$.

In other words, this small vector $\overline{\Delta \ell}$ is simply a directed distance between the point at coordinate ℓ and its new location at coordinate $\ell+\Delta \ell$!

This directed distance $\overline{\Delta \ell}$ is related to the position vector derivative as:

$$
\begin{aligned}
\overline{\Delta \ell} & =\Delta \ell \frac{d \bar{r}}{d \ell} \\
& =\Delta \ell\left(\frac{d x}{d \ell}\right) \hat{a}_{x}+\Delta \ell\left(\frac{d y}{d \ell}\right) \hat{a}_{y}+\Delta \ell\left(\frac{d z}{d \ell}\right) \hat{a}_{z}
\end{aligned}
$$

As an example, consider the case when $\ell=\rho$. Since $x=\rho \cos \phi$ and $y=\rho \sin \phi$ we find that:

$$
\begin{aligned}
\frac{d \bar{r}}{d \rho} & =\frac{d x}{d \rho} \hat{a}_{x}+\frac{d y}{d \rho} \hat{a}_{y}+\frac{d z}{d \rho} \hat{a}_{z} \\
& =\frac{d(\rho \cos \phi)}{d \rho} \hat{a}_{x}+\frac{d(\rho \sin \phi)}{d \rho} \hat{a}_{y}+\frac{d z}{d \rho} \hat{a}_{z} \\
& =\cos \phi \hat{a}_{x}+\sin \phi \hat{a}_{y} \\
& =\hat{a}_{\rho}
\end{aligned}
$$

A change in position from coordinates ρ, ϕ, z to $\rho+\Delta \rho, \phi, z$ results in a change in the position vector from \bar{r} to $\bar{r}+\overline{\Delta \ell}$. The vector $\overline{\Delta \ell}$ is a directed distance extending from point ρ, ϕ, z to point $\rho+\Delta \rho, \phi, z$, and is equal to:

$$
\begin{aligned}
& \begin{aligned}
\overline{\Delta l} & =\Delta \rho \frac{d \bar{r}}{\mathrm{~d} \rho} \\
& =\Delta \rho \cos \phi \hat{a}_{x}+\Delta \rho \sin \phi \hat{a}_{y} \\
& =\Delta \rho \hat{a}_{\rho}
\end{aligned} \\
&
\end{aligned}
$$

If $\Delta \ell$ is really small (i.e., as it approaches zero) we can define something called a differential displacement vector $\overline{d \ell}$:

$$
\begin{aligned}
\overline{d \ell} & \doteq \lim _{\Delta \ell \rightarrow 0} \overline{\Delta \ell} \\
& =\lim _{\Delta \ell \rightarrow 0}\left(\frac{d \bar{r}}{d \ell}\right) \Delta \ell \\
& =\left(\frac{d \bar{r}}{d \ell}\right) d \ell
\end{aligned}
$$

For example:

$$
\overline{d \rho}=\frac{d \overline{\mathrm{r}}}{d \rho} d \rho=\hat{a}_{\rho} d \rho
$$

Essentially, the differential line vector $\overline{d \ell}$ is the tiny directed distance formed when a point changes its location by some tiny amount, resulting in a change of one coordinate value ℓ by an equally tiny (i.e., differential) amount $d \ell$.

The directed distance between the original location (at coordinate value ℓ) and its new location (at coordinate value $\ell+d \ell$) is the differential displacement vector $\bar{d} \ell$.

We will use the differential line vector when evaluating a line integral.

